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Introduction

The development and evaluation of methods for data analysis are often facilitated through sim-

ulation studies, particularly when closed-form solutions are unknown (Burton, Altman, Royston,

& Holder, 2006). Simulation studies can be especially useful for assessing the behavior of analytic

techniques under various conditions that present complexities in practice. For example, Collins,

Schafer, and Kam (2001) described the bias that resulted from multiple imputation methods

that utilized varying degrees of auxiliary data by simulating data under conditions that varied

the percentage missing, the reasons for missingness, and the strength and availability of auxil-

iary information. Desai, Bryson, and Robinson (2013) performed a simulation study to evaluate

properties of robustly-estimated standard errors in the presence of clustering when clustering

membership is misspecified. In research to evaluate and develop methods for handling missing

data, simulating studies with right-censored outcomes as functions of time-varying covariates is

critical. There is particular interest in simulating studies with characteristics, including corre-

lation structures over time and across features, that closely resemble a complicated motivating

data set.

A large body of research has been devoted to generating right-censored survival times from

time-invariant covariates. For example, Leemis, Shih, and Reynertson (1990) demonstrated that

survival times that followed a Cox proportional hazards model could be generated by inverting

the cumulative hazard function. Independently, Bender, Augustin, and Blettner (2005) o↵ered

details on simulating survival times from such a model where the hazard function was assumed

to follow exponential, Weibull or Gompertz distributions.

However, generating right-censored outcomes as functions of time-varying covariates is more

complicated; a subject’s outcome corresponds to multiple values of a covariate over time where

the number of values for the covariate may vary across subjects. Using the approach described by

Bender et al. (2005) for this purpose is challenging as it would require inversion of the expression

H0(t) exp(�
0
x(t)) which includes the cumulative hazard function. Sylvestre and Abrahamowicz

(2008) argue that such inversion cannot be easily done since it is only possible if the baseline

hazard can be represented by a parametric function. A possible solution is to express changes
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over time in the covariate, x(t), as a parametric function that is well-defined over the range of

time studied. To that end, Austin (2012) extended the work of Bender et al. (2005) although the

extension is limited in that it can only accommodate one time-varying covariate.

Alternatively, Sylvestre and Abrahamowicz (2008) evaluated extending an algorithm first in-

troduced by Abrahamowicz, MacKenzie, and Esdaile (1996) for time-invariant covariates; this al-

gorithm did not require inverting the cumulative hazard function. Instead, the algorithm matches,

one-to-one, survival times and covariates that have been generated independently, based on a

probability law derived from the partial likelihood of the Cox proportional hazards model. This

method allows for any number of time-invariant as well as time-varying covariates without a need

to specify a functional form for how they vary over time, but the proposed process of generating

the survival times has no closed-form solution. Time-dependent e↵ects, i.e., e↵ects that would

vary depending on the time interval, can be introduced directly in the vector of survival times

provided to the algorithm but generating those survival times is challenging. Similarly, Crowther

and Lambert (2013) proposed a method that relies on numerical integration and allows explicit

modeling of the baseline and estimation of the absolute hazard but it can be computationally

expensive if the number of covariates is large.

Independently, Zhou (2001) showed that right-censored outcomes can be generated by trans-

forming a random variable that follows a piecewise exponential distribution, where the hazard

is assumed to be constant within a time interval but can vary across time intervals that are

defined by changes in the covariate. A closed-form solution for generating the data was also

provided. Hendry (2014) developed a general algorithm (with code in R) that implements Zhou’s

method to generate right-censored survival times under the Cox model with any number of both

time-invariant and time-varying covariates that vary at integer-valued steps of the time scale.

This study focuses on Zhou’s method for three important reasons. The first is that it is

supported by readily accessible software developed by Hendry (2014), providing easy access to a

wide audience of potential users. The second is that it can accommodate any number of time-

invariant and/or time-varying covariates. Finally, although not highlighted in our study here,

Zhou’s method provides the additional flexibility of enabling relaxation of the proportionality

assumption by allowing the e↵ects to vary between time-intervals (time-dependent e↵ects). Note
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that the latter is not a feature shared by other methods.

There are multiple user-supplied parameters involved in applying Hendry’s implementation of

Zhou’s method, but properties of the distribution of the outcome may be sensitive to their specifi-

cation. The primary purpose of this paper is to evaluate these sensitivities and provide guidelines

on the use of the Hendry algorithm. To that end, based on an extensive simulation study, we

suggest a flexible form for the baseline hazard and characterize the sensitivity of the method to

other user inputs under a variety of conditions. Specifically, sensitivities of the algorithm to the

censoring distribution are addressed, the shape of the hazard, the degree of correlation between

covariates, and the type of covariates. The performance of the algorithm is evaluated through

standardized bias and mean squared error of the fitted coe�cients and use these statistics to

inform guidelines on use of the algorithm.

Cox Regression Models with Time-Varying Covariates via

the Piecewise-Exponential Distribution

Zhou (2001) showed that if Yj, j = 1, . . . , J are random variables that follow a piecewise expo-

nential distribution, where J indicates the number of intervals, and g(·) is a monotone increasing

function such that g(0) = 0 and g�1(t) is di↵erentiable, then g(Yj) follows a Cox model with a

time-varying covariate and a baseline hazard h0(t) =
d
dt [g

�1(t)]. To incorporate covariates, one

can specify the piecewise exponential variables with varying rates �j such that they depend on

any number of time-invariant and/or time-varying covariates Zj = Zj1, . . . , ZjP and regression

parameters � = �1, . . . , �P where �j = exp(�Z0
j). In this form, e↵ect sizes can easily be intro-

duced as the components of the rates for the piecewise exponential variates where the hazard of

g(Yj) is defined by h0(t) exp(�Z
0
j). Time-dependent e↵ects can be introduced by allowing the

e↵ects to vary between time intervals (�j = �j1, . . . , �jP ) and so �j = exp(�jZ
0
j).

Hendry (2014) demonstrated that piecewise exponential random variables with support [a, b]

such that 0 < a < b (truncated piecewise exponential random variables), can be generated

through an accept-reject algorithm where realizations outside of the support are discarded and

those within are included. A full proof for how one can generate survival times that follow a Cox
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model with time- dependent covariates using a truncated piecewise exponential distribution can

be found in Hendry (2014). Key parameters of the algorithm that need to be defined are: the

bounds of truncation (a, b), the parameters corresponding to the piecewise exponential random

variables or rates �j, the transformation function g, and the censoring mechanism.

The bounds of truncation relate to the limits of observed survival times, which can be informed

by an empirical data set. For example, a lower bound a > 0 can correspond to a lower bound on

subject eligibility (e.g., it may be that only subjects who are considered “active” users of a health

system–i.e., who exceed a minimum duration of observation–are eligible for study). Note this

form of truncation is not to be confused with left truncated time-to-event data, where the latter

would constrain observational times to begin at the lower bound. In contrast, here observational

times begin at zero but are only included if they exceed the lower bound. The upper bound

corresponds to the maximum allowable time observed for an individual. The larger the upper

bound, the larger the number of records per individual. This has implications not only for the

time needed to generate the data, but also for the run time of any application of the simulated

data.

The g function has an important role. It is defined such that g�1(t) = H0(t), the cumulative

baseline hazard of some known function. It should be specified to best represent the disease or

process of interest. Options described by Hendry are mostly power functions and tend to lead

to large hazards such that events occur soon after the start of observation. Hendry suggests

exploring a variety of functional forms to appropriately capture the process studied but does not

o↵er much guidance on parameter choice.

It is recommended the g function be defined through the use of a Weibull distribution so that

the variates generated in the process have a baseline hazard of a Weibull random variable. This

distribution is a flexible choice defined by two parameters: 1) shape, ⌫, which determines whether

the hazard is increasing over time (⌫ > 1), constant (⌫ = 1), or decreasing (⌫ < 1); and 2) scale,

�, which shifts the hazard distribution right or left, depending on the overall survival time. The

Weibull distribution has a hazard function defined by h0(t) = �⌫t⌫�1 and the cumulative hazard

equal to H0(t) = �t⌫ . By fixing ⌫, one can generate outcomes with a pre-determined median

survival time informed by the empirical data (which we will call the target median).
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Assume g�1(t) to be the cumulative baseline hazard from the Weibull distribution with shape

parameter ⌫ and scale parameter �. The estimated median survival time, t̂(50), for an individual

whose vector of explanatory variables is Z = (Z1, . . . , Zp) with estimated e↵ects ˆ� =
⇣
�̂1, . . . , �̂p

⌘

is defined by

t̂(50) =

(
log 2

�̂ exp(ˆ�z0)

) 1
⌫̂

(Collett, 2003, p. 177). This formula can be used to compute a value for �, given ⌫ and a

target median. This is done for a hypothetical individual whose covariate values are at the mean
⇣
ˆ�Z = �̂1Z1 + · · ·+ �̂pZp

⌘
.

There are a variety of options that the user can consider for incorporating censoring into the

data generation process. Often studies impose administrative censoring where subjects are no

longer observed beyond the study end date. This is fairly straightforward to define once times

to the event have been generated. However, censoring may arise for other reasons, like when

subjects drop out of or withdraw from a study and are lost to follow-up.

There are two main ways to implement this type of censoring. One is referred to as traditional

censoring, in which both a survival time and a censoring time are generated and then the minimum

value of the two is chosen as the time the subject was observed. If the minimum value was the

survival time, an indicator for whether the subject was observed to have the event will equal

1. Otherwise, if the subject’s time was censored, the indicator will equal 0. Hendry’s algorithm

can also be used to impose traditional censoring. To obtain the intended percent of observations

being censored, though, additional parameters need to be specified and refined by iteration. The

second alternative, referred to as random censoring, is easier to implement and computationally

more e�cient. In this approach, each patient’s observation is simply censored at random with

a probability determined by the percentage of censored observations desired. An indicator for

whether the time was censored follows a Bernoulli distribution with a pre-specified probability.

For more on incorporating censoring into simulations, see Crowther and Lambert (2013), Burton

et al. (2006), and Bakoyannis and Touloumi (2012).

Consider the impact of these parameters on generating data that closely mimic a motivating

data set. Specifically, the investigation in this study is on the impact of the parameters for the
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Weibull distribution, censoring mechanism, correlation among variables, and variable type on

properties of estimates obtained from fitting an extended Cox model to data generated using this

approach, as well as a generated survival time distributions and variation in computation time.

Methodology

Design of Simulation Study

The parameters of the simulation study follow a full factorial design of the following parameters:

Bounds of truncation (a, b): (20, 300), (20, 150), (20, 50)

Covariate combinations: 2 Normal, Z1 ⇠ N(50, 102) and Z2 ⇠ N(30, 52); 1 Normal + 1

Binary, Z1 ⇠ N(50, 102) and Z2 ⇠ Bern(0.5)

Weibull shape parameter (⌫): 2; 1; 0.5

Target median: 35; 75; 150

Censoring distribution: None; Random; Traditional; Administrative

Percent censored patients (if censoring applied): 20%; 50%; 80%

Data were generated using all possible combinations of the parameters listed with the exception

of the percent of patients censored, which is relevant only when an actual censoring distribution

is being applied. Details on the choice of parameters are described here.

Data Generated

Using Hendry’s algorithm, survival times were generated to fall within 2 bounds of truncation

defining the range of possible survival times. The lower bound, a, was fixed at 20 and the upper

bound, b, was allowed to vary (50, 150, and 300). Survival times depended on two independent

time-varying covariates (Z1, Z2) in two possible combinations: one in which both covariates are

normally distributed random variables and a second in which one covariate is normally distributed

and the other is a Bernoulli random variable. Specifically, Z1 is always assumed to be N(50, 102)

and Z2 could be either be N(30, 52) or Bern(0.5).

The transformation function g was specified to be derived from a Weibull distribution with

shape parameter corresponding to an increasing (⌫ = 2), constant (⌫ = 1), or decreasing (⌫ = 0.5)
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hazard. The scale parameter is computed after providing the shape parameter and the target

median survival time, which vary (35, 75, and 150). Note that some target medians fell outside

the bounds, demonstrating the impact of parameter choice. For a given shape parameter (⌫),

target median (M), and vector of regression parameters � = (�1, �2), the scale parameter � and

the g function are defined as follows:

� =
log 2

�Z
�⌫M

�⌫ , g(t) = (��1t)frac1⌫ , and g�1(t) = �t⌫

where Z = (Z1, Z2) is the vector of means of the covariates. Under the scenario where Z1 ⇠

N(50, 102) and Z2 ⇠ N(30, 52) then �Z
0
= 50�1 + (0.5)�2.

The algorithm computes survival times within the defined limits, which might be considered

the “true” event times and may or may not be observed depending on the censoring method

applied. For administrative and traditional censoring, these are the uncensored times. We then

imposed 3 types of censoring (administrative, traditional, and random) with various percentages of

patients being censored (20%, 50%, or 80%). In administrative censoring, patients are observed

until a fixed time (end of study). In traditional censoring, censoring times were generated in

parallel with the uncensored survival times using an independent implementation of the Hendry

algorithm. The parameters of the censoring distribution are chosen by iteration to yield the correct

amount of censored observations and are di↵erent than the parameters used in the creation of the

uncensored times, thus reflecting non-informative censoring. The final observed time is defined

as the minimum of the two survival times. The event indicator is set to 0 if the censoring time

is smaller than the uncensored time. In random censoring, each subject has a probability pc, set

to 0.2, 0.5, or 0.8 (depending on the percentage of censoring desired), of being censored at the

end of the subject’s generated survival time. Event indicators were thus distributed as Bernoulli

random variables with p = 1� pc.

The influence of the correlation between the covariates on properties of estimates obtained

from fitting the Cox model is examined. The covariates, as defined above, were allowed to be

correlated, with correlations ranging from -0.8 to 0.8, using the mvrnorm function in R when

generating two Normal random variables and the binnor package in R when generating one

Normal and one Bernoulli variable (Demirtas & Doganay, 2012). In this scenario, survival times
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were set to be bounded between 20 and 300, the shape parameter, ⌫, was fixed at 2, and the

target median was fixed at 150.

Number of Replications

For each scenario or combination of the simulation parameters, we drew 1000 simulated data

sets (replicates) each with 1000 individuals with varying number of observations per individual

depending on the scenario being simulated and the data generated.

Parameters to Be Estimated

We fit the true model (an extended Cox model) to the data generated and obtained estimates for

the regression coe�cients corresponding to the two covariates. Parameters were set to �1 = 0.02

and �2 = 0.04 when covariates were two Normal variables and �1 = 0.02 and �2 = �0.5 when

covariates were one Normal and one Bernoulli.

Evaluation Criteria

The performance of the algorithm was assessed by three statistics, which were computed for each

parameter estimate (�̂1, �̂2): the standardized bias (di↵erence between the average estimate and

the true value as a percentage of the estimate’s empirical standard error), the mean squared error

(MSE, squared di↵erence between the true and estimated parameter averaged over the number

of simulations), and the coverage percentage (percentage of time the 95% confidence interval

contains the true parameter). As suggested by Collins et al. (2001), standardized bias larger

than 40% (in absolute value) is considered to indicate poor performance. Although nominal

coverage percentage is 95%, Collins and others defined acceptable coverage as 90% or higher. In

order to assess how close the distribution of the generated survival times is to the distribution

of times in the empirical data set, we graphically assess the median survival times generated.

Finally, we compare algorithm run times across di↵erent combinations of simulation parameters.

[Insert Figure 1 about here.]
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Results

Impact of Limits on the Survival Times Generated

Data generated under the most restrictive bound (20,50) with a median goal equal to 35, indepen-

dent of the types of covariates, yielded large standardized bias relative to the other two bounds

(e.g, the range of standardized bias for Normal covariates was -48.4 to -14.2, -11.6 to -0.7, and

-15.0 to 4.0 for the 20-50, 20-150, and 20-300 bounds, respectively; Figure 1, left column). For

both traditional and administrative censoring, under the most restrictive bound, the standardized

bias decreased as the percent of censored observations increased (e.g., the range of standardized

bias for two Normal covariates assuming traditional censoring was -40.9 to -14.2 and -6.3 to -3.2

for 0% and 80% censored, respectively). This was not the case for random censoring, however.

For example, the range of standardized bias when the two covariates are normally distributed

was -40.9 to -14.2 and -33.9 to -22.0 for 0% and 80% censored observations, respectively (Figure

2, left column). Results are not shown for administrative censoring.

[Insert Figure 2 about here.]

Coverage percentages were close to 95% for most combinations of the parameters simulated

(0.89-0.97). Somewhat lower coverage–although still over 90% was obtained when generating

times using smaller limits with random censoring (e.g., coverage percentages for 2 Normal covari-

ates assuming a target median of 35 were 0.92 to 0.95, 0.94 to 0.97, and 0.94 to 0.96 for bounds

of 20-50, 20-150 and 20-300, respectively; Figure S1A, middle columns, rows 4-6).

Independent of the bounds and censoring type assumed, when the percent of censored ob-

servations increased from 0% to 80% censored for the binary covariate, the MSE increased from

0.004 to 0.027 (Figure S2C, columns 2, 4 and 6, rows 1-3). In contrast, the MSE remained close

to zero when covariates followed a Normal distribution (Figure S2C).

[Insert Figure 3 about here.]
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Impact of g Function Definition

Overall, under data generated with the least restrictive bound (20,-300), when the shape parame-

ter for the Weibull distribution was 2 (compared to 1 or 0.5), the median of the generated survival

times came closer to the target (Figure 3).

More specifically, under random censoring, a shape parameter of 2 yielded survival time dis-

tributions with medians closer to the target median relative to the other shape parameter choices

(e.g., for a target median equal to 150, under random censoring with 2 Normal covariates, median

survival times ranged from 131.0 to 156.5 and 77 to 113.0 when ⌫ = 2 and 0.5, respectively). The

value was almost on target when covariates were both generated from the Normal distribution

but fell short when covariates were of mixed type (e.g., for a target median equal to 150 with

⌫ = 2), under random censoring, median survival times ranged from 131.0 to 156.5 and 93.0 to

114.0 when the two covariates were both normally distributed and mixed, respectively; Figure 3,

middle row).

Computational e�ciency was a↵ected by the choice of target median. The median run time

increased as the target median increased (Figure 4). For random, administrative, and traditional

censoring, respectively, run times ranged from 10.7 to 132.9 seconds, from 20.9 to 163.2 seconds,

and from 49.7 to 213.2 seconds.

[Insert Figure 4 about here.]

Overall, using a shape parameter equal to 2 provided distributions of survival times that have

a median closer to the target value (Figure 5). We observed no di↵erences in bias, MSE, or

coverage probabilities between the choices of target median when the range of survival times is

large (Figure S2).

[Insert Figure 5 about here.]

Impact of Censoring Type

There was no di↵erence in overall statistical performance of the algorithm by censoring type. No

di↵erences were found in standardized bias and coverage. For all censoring types, as the percent
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of censored observations increased, the MSE increased, ranging from 0.004 to 0.027 for the binary

covariate and remaining low (on the order of 10-5) for Normal covariates (Figure S2).

However, it was found that computational run times were strongly a↵ected by censoring type.

Beyond the first step in the algorithm of generating uncensored survival times, random censoring

took no additional time whereas traditional censoring more than doubled the run time (Figure

4). For example, for data generated with limits of 20 and 300, a target median of 75, and ⌫ = 2,

median run times were 26.4, 26.6, and 89.2 seconds for uncensored, random and traditional

censoring, respectively.

Impact of Type of Covariates and of Correlation

Negligible di↵erences were found in performance by type of covariates or assumed correlation. In

general, positive bias was found in the fitted coe�cients corresponding to the binary covariate

(e.g., for a target median equal to 35 and under random censoring, bias ranged from -4.0 to 9.7,

-2.2 to 16.5, and 14.2 to 45.1 for bounds 20-300, 20-150, and 20-50, respectively) and negative bias

for coe�cients of the Normal covariates (e.g., for a target median equal to 35 and under random

censoring, bias ranged from -12.3 to 2.1, -9.7 to -0.7, and -48.4 to -26.2 for bounds 20-300, 20-150,

and 20-50, respectively). However, bias was negligible when the range of survival times generated

(bounds) is large (Figure 1, left vs. right columns).

Median survival times generated were lower when using 1 Normal and 1 binary covariate

compared to when both covariates were normally distributed (Figure 3). For example, for data

generated between limits of 20 and 300 with a target median of 75 and ⌫ = 2, median survival

times ranged from 36.0 to 60.0 and from 48.0 to 85.0 when the covariates were of mixed type and

normally distributed, respectively (Figure 3, middle column).

In the subset of simulations performed to allow for varying correlation between the 2 covariates,

we found a slight increase in the absolute MSE (e.g., from 2.0⇥ 10�5 to 4.0⇥ 10�5 for a Normal

covariate with e↵ect size equal to 0.02) as correlation increased. This is true for both combinations

of the covariates (Figure 6). The MSE increased as the e↵ect size increased, an e↵ect that was

more pronounced for the binary covariate (Figure 6b). For example, for data generated between

20 and 300, assuming a target median of 150, ⌫ = 2, and 50% observations randomly censored,
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when the two covariates were independently generated from a Normal distribution, the MSE for

the covariate with e↵ect size equal to 0.02 was 2.0⇥ 10�5. When the e↵ect size was instead 0.04,

the MSE was 8.2 ⇥ 10�5. The MSE for the coe�cient of the uncorrelated binary covariate with

an e↵ect size of �0.5 equaled to 9.5⇥ 10�3.

[Insert Figure 6 about here.]

Additional results in the Supplemental materials are shown with stratification on either cen-

soring type or statistical performance metric to aid visual interpretation. Figures 1 and 2 are

subsets of supplemental Figures S1 and S2. Tables with the information contained in Figures 1

to 4 are included in the supplemental material (Tables S1 to S4, respectively).

Discussion

Zhou’s method (Zhou, 2001) of generating right-censored outcomes has been implemented by

Hendry (2014) using the piecewise exponential framework and allows for an arbitrary number

and functional form of the covariates. The main point of this study was to provide concrete

recommendations for researchers interested in generating survival data with a specific structure

in mind, as in mimicking a motivating data set from a real study. The algorithm proposed by

Hendry o↵ers flexibility, but the author did not provide guidance on how to choose parameters

that will lead to data with desired features. In particular, one step of the algorithm requires

the practitioner to choose an arbitrary monotone increasing function, g, such that g(0) = 0, and

g�1(t) is di↵erentiable. It was demonstrated that choosing a Weibull distribution for g(·) leads to

a simple calculation that allows the practitioner to specify a target median survival time. This

recommendation has important implications for practical use because it allows researchers to have

much greater control over the generated data.

The simulation results show that, to minimize bias in fitted coe�cients and achieve a realistic

distribution of survival times, generating data with wider limits are better than keeping the range

small even if the target median survival time is low. When generating data to achieve a target

median survival time of 35, the standardized bias was high when survival times were generated

between 20 and 50, but no meaningful bias was found if the range was expanded to 20-150 or
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20-300. It was found, unexpectedly, that when using an overly-restrictive survival time interval

with traditional censoring, bias was reduced as the amount of censoring increased (Figure 2).

It is generally expected that higher percentages of censoring observations will either increase or

have no e↵ect on bias. Here, because the specified range of survival times was too restrictive,

when applying traditional censoring we get an inverse relationship between the percentage of

observations censored and bias.

This counterintuitive relationship is caused by the survival time generation algorithm’s use of

resampling to produce only survival times that fall within a specified interval. Consider the set of

lower-risk individuals whose covariates compel them to have an event later than the upper bound

of the specified interval. The algorithm will use their data to repeatedly generate survival times

until a time is produced that falls within the interval. From a modeling perspective, these lower-

risk individuals are indistinguishable from the higher-risk individuals whose covariates compel

them to have an event near the boundary of the specified time interval. The lower risk represented

by these people’s covariates is not reflected in their survival times, and the result is the bias we

see with the 20-50 interval.

Traditional censoring a↵ects the lower-risk subjects in a sample; subjects with survival times

closer to the upper bound are more likely to be censored under traditional censoring than under

random censoring. Subjects with an event near the upper bound of the pre-specified limits can be

divided into two groups: 1) subjects with risk consistent with having an event near the boundary,

or 2) subjects forced by the algorithm to have an event near the boundary despite their lower-risk

covariates. Group 2’s survival times are not indicative of the actual risk present in the covariates.

Consequently, their inclusion in models estimating associations between covariates and risk results

in bias. Traditional censoring removes members of group 2 at a proportionally higher rate than

that of subjects whose survival times better reflect actual risk (group 1). The reduction in bias

with increased percentages of subjects censored when using traditional censoring is caused by

traditional censoring disproportionately removing the bias-causing portion of our sample. This

bias in the observed sample produces the observed bias in the fitted coe�cients when the range of

possible survival times (bounds) is too restrictive. Random censoring targets all subjects equally,

thus leaving the bias-producing component of our subjects proportionally intact, and so has a
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much less pronounced e↵ect on bias.

Given these results, it is recommended that the range be wide enough to generate a distribution

with the correct shape, but that it should not be too large to preserve reasonable computational

e�ciency. Because the algorithm generates survival times as a function of time-varying covariates

that vary at integer-valued steps of the time scale, each subject will have as many records as the

survival time generated. Thus, a large range means that some subjects will have many records.

This is an important computational consideration, especially if generating data is just a first step

in a much larger simulation.

There is a fine balance between the survival function, exp(�Z0
j), and the baseline hazard, h0(t),

that will influence the final survival times generated and the computational run times. Some of

it can be controlled while defining the g function, which is a key component of the algorithm. It

is suggested defining the g function via a Weibull distribution with parameters informed by an

empirical data set. One can look at the distribution of survival times to decide whether the g

function should reflect an increasing, decreasing or constant baseline hazard, imposing a value for

the shape parameter (⌫).

Also, the empirical median survival time can be used as the target median in the generated

times and use this target median in a formula to compute the scale parameter (�). It was found

that the choice of g function worked well. Statistical performance did not vary by ⌫ or target

median. However, we did find increased run times with increased target medians. Of note, this

approach to generating survival times is still useful even if the observed survival data does not

follow a Weibull distribution but the goal of the simulation study is to evaluate the performance

of the Cox model. However, it might not be appropriate if, for example, the researcher’s aim is

to perform a power analysis.

The algorithm performed similarly for both combinations of covariates, but we found lower

median survival times in the case of covariates of mixed type compared to the case of two Normal

covariates. So, in order to achieve the target median when using covariates of mixed type, the

values of the parameters needed to compute the scale parameter might need to be changed itera-

tively, mainly by inflating the target median, until the distribution of generated times adequately

resembles the empirical target distribution.

14



There were no major issues when covariates were correlated. An increase was noted in the

MSE, which was likely associated with an increase in the e↵ect size and not necessarily with the

type of covariates being used. E↵ect sizes play an important role as they have a direct impact

on the distribution of the survival times. Further investigation is needed as well as exploring the

performance of the algorithm in a scenario where correlations are observed within an individual.

Given the results shown by the simulation study, the following is suggested:

1. The use of the Weibull distribution to define the g function: g = (��1t)
1
⌫ and g�1 = �t⌫ .

2. Parameters for the Weibull distribution can be informed from an empirical dataset:

a. Use the distribution of survival times to decide if the g function should reflect an
increasing, decreasing or constant baseline hazard to define the shape parameter (⌫);

b. Use the observed median survival times to define a target median (M);

c. For a vector of e↵ect estimates � = (�1, . . . , �p) and a vector of means of the covariates
Z = Z1, . . . , Zp, the scale parameter � can be defined as follows:

� =
log 2

�Z0 M
�⌫ ;

3. Iterate until appropriate values can be found for the survival times. A wider range will yield
a higher number of records per subject increasing the computational time. In contrast, a
more limited range may introduce bias;

4. Utilize random censoring.

In conclusion, Hendry’s algorithm for computing survival times that follow an extended Cox

model with time-varying covariates were found to be a reasonable and practical solution when

generating studies intended to closely resemble a motivating data set. Guidelines, substantiated

by the simulation study, are provided to make this process easier.

Disclaimer

The views expressed in this article are those of the authors and do not necessarily reflect the

position or policy of the Patient-Centered Outcomes Research Institute or the United States

government.
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assess how close the distribution of the generated survival times is to the 
distribution of times in the empirical data  

 
 
Figure 1. Standardized bias in fitted coefficients when survival times are generated with 
target median of 35, random censoring, and using mixed covariates 
 
 
set, we graphically assess the median survival times generated. Finally, we 
compare algorithm run times across different combinations of simulation 
parameters. 

Results 

Impact of Limits on the Survival Times Generated 

Data generated under the most restrictive bound (20-50) with a median goal equal 
to 35, independent of the types of covariates, yielded large standardized bias 
relative to the other two bounds (e.g., the range of standardized bias for Normal 
covariates was -48.4 to -14.2, -11.6 to -0.7, and -15.0 to 4.0 for the 20-50, 20-150, 
and 20-300 bounds, respectively) (Figure 1, left column). For both traditional and 
administrative censoring, under the most restrictive bound, the standardized bias 
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Figure 1: Standardized bias in fitted coe�cients when survival times are generated with target
median of 35, random censoring, and using mixed covariates.
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decreased as the percent of censored observations increased (e.g., the range of 
standardized bias for two Normal covariates assuming traditional censoring 
was -40.9 to -14.2 and -6.3 to -3.2 for 0% and 80% censored, respectively). This 
was not the case for random censoring, however. For example, the range of 
standardized bias when the two covariates are normally distributed was -40.9 
to -14.2 and -33.9 to -22.0 for 0% and 80% censored observations, respectively 
(Figure 2, left column). Results are not shown for administrative censoring. 
 
 

 
 
Figure 2. Standardized bias in fitted coefficients when survival times are generated 
bounded between 20 and 50, target median of 35, and using mixed covariates 
contrasting random versus traditional censoring 
 
 
 

Coverage percentages were close to 95% for most combinations of the 
parameters simulated (0.89-0.97). Somewhat lower coverage – although still over 
90% – was obtained when generating times using smaller limits with random 
censoring (e.g., coverage percentages for 2 Normal covariates assuming a target 
median of 35 were 0.92 to 0.95, 0.94 to 0.97, and 0.94 to 0.96 for bounds of 20-50, 
20-150 and 20-300, respectively) (Figure S1A, middle columns, rows 4-6). 
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Figure 2: Standardized bias in fitted coe�cients when survival times are generated bounded
between 20 and 50, target median of 35, and using mixed covariates contrasting random versus
traditional censoring
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Independent of the bounds and censoring type assumed, when the percent of 
censored observations increased from 0% to 80% censored for the binary 
covariate, the MSE increased from 0.004 to 0.027 (Figure S2C, columns 2, 4 and 
6, rows 1-3). In contrast, the MSE remained close to zero when covariates 
followed a Normal distribution (Figure S2C). 
 
 

 
 
Figure 3. Median survival times for data generated bounded between 20 and 300; 
straight lines indicate the relevant target median 
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Figure 3: Median survival times for data generated bounded between 20 and 300; straight lines
indicate the relevant target median

20



MONTEZ-RATH ET AL 

97 

Impact of g Function Definition 

Overall, under data generated with the least restrictive bound (20-300), when the 
shape parameter for the Weibull distribution was 2 (compared to 1 or 0.5), the 
median of the generated survival times came closer to the target (Figure 3). 

More specifically, under random censoring, a shape parameter of 2 yielded 
survival time distributions with medians closer to the target median relative to the 
other shape parameter choices (e.g., for a target median equal to 150, under 
random censoring with 2 Normal covariates, median survival times ranged from 
131.0 to 156.5 and 77 to 113.0 when ν = 2 and 0.5, respectively). The value was 
almost on target when covariates were both generated from the Normal 
distribution but fell short when covariates were of mixed type (e.g., for a target 
median equal to 150 with ν = 2, under random censoring, median survival times 
ranged from 131.0 to 156.5 and 93.0 to 114.0 when the two covariates were both 
normally distributed and mixed, respectively) (Figure 3, middle row). 

Computational efficiency was affected by the choice of target median. The 
median run time increased as the target median increased (Figure 4). For random, 
administrative, and traditional censoring, respectively, run times ranged from 10.7 
to 132.9 seconds, from 20.9 to 163.2 seconds, and from 49.7 to 213.2 seconds.  
 
 

 
 
Figure 4. Median run times for censoring type when survival times are generated 
bounded between 20 and 300 and using mixed covariates 
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Figure 4: Median run times for censoring type when survival times are generated bounded between
20 and 300 and using mixed covariates
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Figure 5. Example of density plots of generated survival times with random censoring for 
the various shape parameters when covariates are (a), above, two Normal random 
variables and (b), below, one Normal and one Bernoulli random variable 
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Figure 5: Example of density plots of generated survival times with random censoring for the
various shape parameters when covariates are (a), above, two Normal random variables and (b),
below, one Normal and one Bernoulli random variable
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In the subset of simulations performed to allow for varying correlation 
between the 2 covariates, we found a slight increase in the absolute MSE (e.g., 
from 2.0 × 10-5 to 4 × 10-5 for a Normal covariate with effect size equal to 0.02) 
as correlation increased. This is true for both combinations of the covariates 
(Figure 6). The MSE increased as the effect size increased, an effect that was 
more pronounced for the binary covariate (Figure 6b). For example, for data 
generated between 20 and 300, assuming a target median of 150, ν = 2, and 50% 
observations randomly censored, when the two covariates were independently 
generated from a Normal distribution, the MSE for the covariate with effect size 
equal to 0.02 was 2.0 × 10-5. When the effect size was instead 0.04, the MSE was 
8.2 × 10-5. The MSE for the coefficient of the uncorrelated binary covariate with 
an effect size of -0.5 equaled to 9.5 × 10-3. 
 

 
 

 
 
Figure 6. MSE of fitted coefficients by correlation amount between covariates when 
survival times are generated bounded between 20 and 300 with random censoring and 
50% of observations censored when covariates are (a), above, two Normal random 
variables and (b), below, one Normal and one Bernoulli variable 
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Figure 6: MSE of fitted coe�cients by correlation amount between covariates when survival
times are generated bounded between 20 and 300 with random censoring and 50% of observations
censored when covariates are (a), above, two Normal random variables and (b), below, one Normal
and one Bernoulli variable
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