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Abstract

The proliferation of longitudinal studies has increased the importance of statistical methods
for time-to-event data that can incorporate time-dependent covariates. The Cox propor-
tional hazards model is one such method that is widely used. As more extensions of the Cox
model with time-dependent covariates are developed, simulations studies will grow in impor-
tance as well. An essential starting point for simulation studies of time-to-event models is
the ability to produce simulated survival times from a known data generating process. This
paper develops a method for the generation of survival times that follow a Cox proportional
hazards model with time-dependent covariates. The method presented relies on a simple
transformation of random variables generated according to a truncated piecewise exponen-
tial distribution, and allows practitioners great flexibility and control over both the number
of time-dependent covariates and the number of time periods in the duration of follow-up
measurement. Within this framework, an additional argument is suggested that allows re-
searchers to generate time-to-event data in which covariates change at integer-valued steps
of the time scale. The purpose of this approach is to produce data for simulation exper-
iments that mimic the types of data structures applied researchers encounter when using
longitudinal biomedical data. Validity is assessed in a set of simulation experiments and
results indicate that the proposed procedure performs well in producing data that conform
to the assumptions of the Cox proportional hazards model.
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1 Introduction

Statistical methods for time-to-event data have long been staples of medical research. Within

this class of methods, the proportional hazards model proposed by Cox [1] is certainly among

the most important, with a variety of its extensions [2–11] and related diagnostic techniques

[3, 7, 11–17] having become standard components of the medical researcher’s toolbox. Largely

due to the increasing availability of data from longitudinal studies, which collect measurements

of the same units at different time points, one class of extensions that has received a great deal of

attention in recent years is the set of models that augment the standard Cox proportional hazards

model to include time-dependent covariates [6, 18–20]. In fact, the inclusion of time-dependent

covariates within the Cox framework is now commonplace in medical research [21–28]. As such,

and as pointed out by Sylvestre and Abrahamowicz [29], researchers engaged in the development

of specialized extensions of survival models, and of the Cox model in particular, must be concerned

with the inclusion of time-dependent covariates [30–34].

As more new extensions of the Cox model with time-dependent covariates are developed,

and as medical researchers encounter as yet undiscovered complications with longitudinal data

structures, validation of modelling techniques through simulations will almost certainly be crucial

[29, 35]. To be sure, the value of simulations has not been lost on researchers investigating the

Cox model, e.g. [34, 36–42]. However, simulation experiments for event history models in general,

and for the Cox model with time-dependent covariates in particular, present a unique set of

complications with respect to the generation of simulated data.

For simulations within the Cox framework, many have noted the issue of assuming a functional

form for the baseline risk [29, 35, 43, 44] and satisfying the proportional hazards assumption within

and across units [11]. However, the most difficult conceptual problem arises when one considers

the relationship between hazard rates and survival times. Like many time-to-event models, the

Cox model is parameterized in terms of the hazard rate, meaning that the relationship between

a set of covariates and the hazard rate must be translated into a relationship between that set

of covariates and survival times in order to generate an appropriate set of simulated data. In a

series of papers, Leemis and colleagues take on this complication directly by demonstrating that
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survival times for proportional hazards models can be generated from known distributions via

inversion of the cumulative hazard function [45–47]. In the same vein (but working independently

of Leemis and colleagues), Bender et al. offer a detailed framework for the generation of survival

times that follow a Cox model without time-dependent covariates [43, 48]. However, Sylvestre

and Abrahamowicz argue that Bender et al.’s algorithm cannot easily be extended to the case

of the Cox model with time-dependent covariates because it involves inverting a function of the

cumulative baseline hazard, which is not possible when the changes in the covariates over time are

not described by a parametric function or are not defined over the entire range of the time span

[29]. Sylvestre and Abrahamowicz then describe and evaluate two alternatives for the generation

of survival times conditional on time-dependent covariates (one that uses a permutation algorithm

based on a permutation probability law derived from the Cox model [49, 50], and another that

generates events within follow-up measurement periods using a binomial model) [29]. Austin,

on the other hand, builds directly upon the framework put forth by Bender et al. and Leemis

and colleagues by demonstrating exactly how researchers can extend the method of inverting

the cumulative hazard function to the case of proportional hazards models with time-dependent

covariates. Specifically, Austin provides detailed derivations of the relationships between survival

times generated according to the exponential, Weibull, and Gompertz distributions and a set of

time-fixed covariates and exactly one time-dependent covariate [35].

In short, though applications of the Cox proportional hazards model with time-dependent

covariates are likely to become increasingly important for medical research, the incorporation

of time-dependent covariates remains as a thorny complication to overcome when generating

simulated data that adhere to the assumptions of the Cox model. To date, only a small number

of researchers have put forth procedures for the generation of simulated data that follow a Cox

model with time-dependent covariates [29, 35, 44, 46, 47]. The objective of this paper is to

advance this literature further by presenting another general means of simulating survival times

conditional on time-dependent covariates that follow the assumptions of the Cox model. Like

the methods presented by Sylvestre and Abrahamowicz [29], the procedure proposed here allows

for an arbitrary number of time-dependent covariates of unrestricted functional form. However,

unlike these methods, but similar to the presentation of Austin [35], the data generating process
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that produces survival times can be presented in closed form. The expression of the relationship

between time-dependent covariates and survival times in closed form is not an advantage of

the procedure per se, but this ability in combination with the capacity to include an arbitrary

number and form of the time-dependent covariates differentiates this method from those currently

proposed in the literature.

To proceed, the paper extends upon a method advanced by Zhou [44], which thus far has

received little attention in the medical literature (but see [51–54]). The method presented relies

on a simple transformation of a random variable generated according to a truncated piecewise

exponential distribution, where the bounds of truncation allow the user to specify the minimum

and maximum number of measurements that are of interest for a particular application, and the

piecewise nature of the distribution allows covariates to vary as step functions over the time scale

(for a different perspective that uses the piecewise exponential distribution to directly model time-

dependent effects in proportional hazards situations, see [55–57]). Within this general framework,

an additional argument is suggested that allows practitioners to generate data that vary at integer-

valued steps of the time scale, which would be the case in a particular empirical application if

follow-up measurements are taken at days, weeks, months, etc. The goal is to suggest a means of

generating simulated data that more closely match real-world empirical situations examined in

longitudinal studies.

The paper proceeds as follows. The next section formally introduces the Cox proportional

hazards model with time-dependent covariates in order to set up the mathematical issues that

must be considered in data generation procedures intended to follow this specification. Section

3 explicates the relationship between variates generated according to a truncated piecewise ex-

ponential distribution and survival times that follow a Cox proportional hazards model. In so

doing, the section provides a general result illustrating that a transformation of the truncated

piecewise exponential distribution follows the Cox model, shows how this result can be used in the

context of rejection sampling, presents a summary of the suggested algorithm, and offers practical

guidance on the choice of a transformation. Section 4 validates the proposed method in a series

of simulation experiments, and Section 5 provides guidance on how the method can be extended

to examine violations of the assumptions of the Cox model. Finally, Section 6 offers concluding
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remarks.

2 The Cox model with time-dependent covariates

Let Zij(t) be the jth covariate of the ith unit under observation, where i = 1, . . . , n, j = 1, . . . , p,

and t is an observed value of the time scale. The notation Zij(t) indicates that the value of

Zij varies as a function of the time scale. Then the Cox proportional hazards model with time-

dependent covariates specifies that the hazard rate for the ith individual is given by:

hi(t) = h0(t) exp(Zi(t)β), (1)

where h0 is the so-called baseline hazard rate, Zi(t) is a 1× p vector of covariates for unit i that

may be either time-fixed or time-dependent, and β is a p× 1 vector of coefficients.

Among the advantages of the Cox model over other types of time-to-event methods is the

fact that the baseline hazard can be left unspecified in practice. The only assumption about

functional form that a practitioner must make is that h0 is a nonnegative function of t. For

researchers without strong substantive theory about the shape of the hazard when Zij(t) = 0,

the Cox model offers a great deal of flexibility. However, the Cox model also imposes a rather

strong constraint on the data in that it carries the assumption of proportional hazards. With

time-dependent covariates, the proportional hazards assumption states that the relative hazard

for any two observations i and j follows the relationship

h0(t) exp(Zi(t)β)

h0(t) exp(Zj(t)β)
=

exp(Zi(t)β)

exp(Zj(t)β)
. (2)

That is, researchers employing the basic Cox model must be able to reasonably assume that the

relative impact of any two values of a covariate—either within or across observations—can be

summarized by the single coefficient β [11].

From a data generation perspective, producing random variables that follow a Cox propor-

tional hazards model involves translating the hazard rate given in equation (1) with the property

given in equation (2) into an appropriate data generating process for survival times. Without
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the presence of time-dependent covariates, this translation can be made in a straightforward way

by noting that the exponential, Weibull, and Gompertz distributions, some of the most common

distributions employed in parametric survival analysis, also carry the proportional hazards as-

sumption. Therefore, if a researcher is simply interested in generating survival times as part of a

data matrix with one row per unit under study, the task can be handled by simulating random

variables that follow an exponential, Weibull, or Gompertz distribution conditional on a set of

covariates and an assumed value of β, a relatively elementary task using standard statistical soft-

ware [43]. However, if a researcher is interested in generating data that follow a Cox model with

time-dependent covariates, and if the desired data structure is one in which covariates vary at

integer-valued steps of the time scale (as would be the case if measurements are taken at minutes,

hours, days, weeks, years, etc.), the translation from equations (1) and (2) into a data generating

process is not as transparent. The following section demonstrates that such a translation can

be achieved by employing a simple transformation of a truncated piecewise exponential random

variable.

3 Cox via truncated piecewise exponentials

The idea of using a transformation of exponential random variables to simulate survival times

that follow a Cox model was presented by Leemis et al. [46] and Zhou [44]. Expanding on this

general approach, Zhou [44] developed a procedure for generating survival times that follow a

Cox model with time-dependent covariates that uses a transformation of piecewise exponential

random variables. Though this latter approach represents a large step forward given the state of

the literature at that time, it is limited to consideration of situations with only one time-change

point per unit, where the time-change point characterizes the transition of a single binary time-

dependent covariate from a value of 0 to a value of 1. Such a case may be used to represent,

for instance, a unit’s transition from a non-exposure condition to an exposure condition in which

the unit remains exposed for the remainder of the follow-up measurement period (as would be

the case with a procedure such as an organ transplant [35]). This simulated circumstance may

reasonably capture an important class of real-world settings of interest to biomedical researchers,

but it is certainly not general enough to capture the range of situations that concern users of
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longitudinal observational data, with measurements taken on a vast array of characteristics and

at multiple time points. The argument presented in this paper extends on the discussion of Zhou

[44], but provides a more general procedure that allows for an arbitrary number of time change

points and an arbitrary form of the covariate(s).

The presentation of the truncated piecewise exponential distribution relies on various develop-

ments of piecewise exponential distributions and truncated exponential distributions [4, 44, 58–

65]. Notation most closely follows that used by Hougaard [4] and Ibrahim et al. [60].

To begin, consider a prespecified partition of the time scale under investigation, S = {s1, s2, . . . , sJ},

0 = s0 < s1 < · · · < sJ , forming J intervals (0, s1], (s1, s2], . . . , (sJ−1, sJ ], where sJ is greater

than the largest observed survival time. For the purposes of exposition, and without loss of gen-

erality, in this section only one time-dependent covariate is considered. Define a time-dependent

covariate as Z(t) = Zj, sj−1 < t < sj, where Z(t) is allowed to follow an arbitrary distribution.

Additionally, let λj = exp(Z(t)β). Then we can say that the random variable T is distributed as

piecewise exponential conditional on Z(t) if its density is given by

k(t) =

j−1∏
h=1

exp (−λh (sh − sh−1)) (λj) exp (−λj (t− sj−1)) I{sj−1 < t ≤ sj},

where I is the indicator function. The form of the density shows that a piecewise exponential

random variable has a constant hazard in each interval, i.e., λ(t) = λj for t ∈ (sj−1, sj], j =

1, . . . , J . Then the density of a truncated piecewise exponential random variable with support

[a, b] is given by

f(t) =
k(t)I{a ≤ t ≤ b}
K(b)−K(a)

,

where K is the distribution function associated with k.

To see how the truncated piecewise exponential distribution allows the researcher great flexibil-

ity in generating survival times that follow a Cox model with covariates that vary at integer-valued

steps of the time scale, consider an arbitrary transformation g, such that

g(0) = 0, g(t)↗ for t > 0, and g−1(t) is differentiable. (3)
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Applying these properties of g, we are able to derive the following result.

Theorem: Suppose a random variable Y is generated as piecewise exponential with density

function given by

kY (t) =

j−1∏
h=1

exp
(
−λh

(
g−1 (sh)− g−1 (sh−1)

))
× (λj) exp

(
−λj

(
t− g−1 (sj−1)

))
I{g−1 (sj−1) < t ≤ g−1 (sj)},

j = 1, 2, . . . , J , and corresponding distribution function KY (t), where g is defined in (3). Further,

suppose that X is a truncated version of Y with density function given by

fX(t) =
kY (t)I{g−1(a) ≤ t ≤ g−1(b)}
KY (g−1(b))−KY (g−1(a))

,

where [g−1(a), g−1(b)] is the support of X. Then g(X) follows a Cox model with a time-dependent

covariate and baseline hazard h0(t) = d
dt

[g−1(t)].

A proof of the theorem is presented in Appendix A..

Remark 1: Since piecewise exponential random variables can easily be generated using standard

statistical software, the generation of truncated piecewise exponentials can be accomplished by

using rejection sampling.

The well-known rejection sampling result states that if f and k are densities on R such that

for some M > 1,

f(x) ≤Mk(x) ∀ x,

and if Y is generated from k and U ∼ U[0, 1], then X may be generated from f by calculating

Y = Mk(X)/f(X) and accepting each value such that Y U ≤ 1 as a random draw of X. For the

context considered here, suppose that Y is a piecewise exponential random variable with density

function kY (t) and distribution function KY (t). Further, suppose that X is a truncated piecewise
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exponential random variable with support [a, b], and density

fX(t) =
kY (t)I{a ≤ t ≤ b}
KY (b)−KY (a)

.

Then to generate random draws of X, we need to find M > 1 such that fX(t) ≤ MkY (t) ∀ t.

Since f has density 0 for t < a and t > b, we only need to consider t such that a ≤ t ≤ b. Note

that

fX(t) ≤MkY (t) =⇒ kY (t)

KY (b)−KY (a)
≤MkY (t) =⇒ 1

KY (b)−KY (a)
≤M.

Therefore, for any given bounds of truncation {a, b}, we can let M = 1
KY (b)−KY (a)

, provided that

KY (b) −KY (a) < 1. Since K is the cumulative distribution function of a piecewise exponential

distribution, this relation will hold for all a and b such that 0 < a < b.

Remark 2: To generate survival times that follow a Cox model conditional on covariates that

vary at integer-valued steps of the time scale, one simply has to let the partition S be a sub-

set of the natural numbers and approximate the value in the final interval of each survival time

by using its ceiling value. That is, for a survival time of the ith observation, Ti, generated

according to a truncated piecewise exponential distribution with rates λ1, . . . , λJ and partition

Si = {si1, . . . , sij} ⊂ N such that sij−1 < Ti ≤ sij, data for the ith observation can be constructed

by associating Zi1, . . . , Zij with survival times si1, . . . , sij. Then the total survival time for the

ith observation is given by
∑

j sij.

[Table 1 about here.]

Table I illustrates the structure of data generated according to the proposed method. An

identification variable for each observation that is measured at multiple time points is presented

along with the elapsed time at each measurement occasion and a censoring indicator. Covariate

values are omitted for purposes of illustration. This is a standard format for time-to-event data

with time-dependent covariates. Comparing the elapsed times for the corrected and uncorrected

versions associated with the final row of each case i.d. demonstrates the effect of using the ceiling

value for the final time interval. The corrected data, in which all measurements are assumed

to be taken at integer valued steps of the time scale, will look familiar to applied longitudinal
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researchers who employ time-to-event methods. The uncorrected data, on the other hand, vary

at integer valued steps for all but the final time interval—a structure unlikely to be encountered

in observational data. It will be shown later that the corrected version provides an excellent

approximation.

3.1 Algorithm

All of the pieces required to generate survival times that follow a Cox proportional hazards

model conditional on covariates that vary as integer-valued steps of the time scale have now been

presented. The algorithm can be summarized as follows:

1. Define g such that g(0) = 0, g(t)↗ for t > 0, and g−1(t) is differentiable
2. Define a maximum value for the time scale t ∈ N
3. Define a finite partition of the time scale S = {s1, . . . , sJ} ⊂ N : maxS ≤ t
4. Define bounds of truncation a, b ∈ S : a < b < t
5. Define number of observations n
6. Define β
7. For i in 1 to n

(a) Generate {Zij}tj=1

(b) Calculate {λij}tj=1 = {exp (Zijβ)}tj=1

(c) Generate Xi as truncated piecewise exponential with rates λi1, . . . λiJ , time-change
points g−1(s1), . . . , g

−1(sJ), and bounds of truncation g−1(a), g−1(b)

(d) Calculate Ti = g(Xi)
8. Define a censoring indicator {δi}ni=1, where δi ∈ {0, 1}
9. Let data= ∅. For i in 1 to n

(a) For j in 1 to ceiling(Ti)− 1, add (0, j, j − 1, Zij) to matrix for observation i

(b) For j = ceiling(Ti), add (δi, j, j − 1, Zij) to matrix for observation i

(c) Add matrix for observation i to data

In other words, the user begins with a time partition, along with the minimum and max-

imum number of measurements required per unit and a desired form for the covariate vector.

Presumably, all of these choices will be made with a particular empirical analogue in mind. After

Ti is generated conditional on Zijβ, values 1 through ceiling(Ti) are then associated with each

Ziceiling(Ti), and all Zij such that j > ceiling(Ti) are discarded. Additionally, the definition of the

censoring indicator is left arbitrary to illustrate that this too can take a variety of forms. The

algorithm is currently expressed in such a way that censoring is random, and can be uniformly

distributed (and hence, uninformative), subject to a biased assignment mechanism in which, say,

survival times that are relatively long or relatively short are more or less likely to be censored, or
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subject to a set of cutoff points defined by a value or percentile of Ti, as in [35]. Alternatively, as in

[29, 50], the user could specify a marginal distribution of censoring times, Ci, following the same

set of procedures used to generate event times and take T ∗
i = min{Ti, Ci} and δi = I{Ti ≤ Ci} as

the values of the survival time and censoring indicator for unit i, respectively. This alternative

approach would require reexpressing steps 7 and 8 of the algorithm in a straightforward manner.

The result will be a data set having the structure of the corrected data in Table I, with each

unit having a minimum and maximum number of rows a and b, respectively.

3.2 Hardware and software specifications

For the simulations that follow, the algorithm was implemented using R 2.15.2 with a Mersenne-

Twister random number generator on a machine with an Intel Xeon 2.26 GHz processor running

Windows 7 64-bit. Piecewise exponential random variables were generated using a suite of func-

tions in the msm package [66], Cox parameters were estimated using the coxph function [67] with

the Efron method for handling tied data, and diagnostic testing of the proportional hazards as-

sumption was performed using the cox.zph function in the survival package [68]. Sample code

for the procedure is presented in Appendix B..

3.3 Practical Considerations

The choices of g, β, a, b, and the data generating process for Z have all been left arbitrary in

the discussion up to this point (with g only subject to the requirements in (3)). But all will have

important practical consequences in terms of the computational cost of the rejection sampler

(step 7(c) of the algorithm) and the form of the final distribution of survival times.

To make appropriate choices, it is important to understand the basic mechanics of the method.

In short, the rejection sampler takes random draws from a piecewise exponential distribution, with

rates defined by Zjβ, and only accepts draws that fall between g−1(a) and g−1(b). Intuitively, we

can consider piecewise exponential random variables to represent the time until occurrence of an

event. Thought of in this way, large positive expected values of Zjβ will represent higher rates

of event occurrence, and hence smaller average time values. Likewise, large negative expected

values of Zjβ will represent lower rates of event occurrence, and hence larger average time values.
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Therefore, given a data generating process for Z and a value of β, the choices of g, a, and b will

make the rejection sampler more or less computationally expensive, and vice versa.

3.3.1 Illustration: Choice of g given a, b, and Zjβ

Researchers performing simulation experiments in the context of event history models generally

concern themselves with coefficient and covariate values that are relatively small in magnitude

(often less than 1), whether positive or negative. In such cases, the greatest computational

expense of the rejection sampler will often be realized in the number of draws rejected because

they do not meet the specified minimum threshold of the truncated distribution. Therefore, given

a choice of a minimum number of measurements desired in the resulting set of simulated data,

a, it will typically make sense for the researcher to choose g such that g−1(a) will be close to 0.

Given the requirements of g specified in (3), a natural choice is to allow g to be a power function

and g−1 its associated positive root.

Consider a scenario in which the desired minimum and maximum number of measurements in

the simulated data are 10 and 150, respectively. We let the vector of j rate parameters for unit i

be defined by λij = β1Z1ij + β2Z2ij, where Z1 ∼ U[−.5, .5], Z2 ∼ Bin(.5), β1 = 2, and β2 = −1,

and we desire 500 simulated datasets with 1000 units each. Figure 1 illustrates the consequences

of choosing g as a power function with exponents 2, 3, and 4.

[Figure 1 about here.]

Unlike the process in practical applications, for this illustration all of the piecewise exponen-

tial draws were retained in addition to the truncated draws that will be transformed into the

resulting survival times. The top row of panels in Figure 1 presents densities for each of the 500

simulations for both the piecewise and truncated piecewise exponential distributions. In each

case, the densities illustrate that the vast majority of piecewise exponential draws for this choice

of coefficients and covariates fall well short of the desired minimum value, and the effect of as-

suming a power function for g and using successively larger exponents is to create successively

smaller and narrower bounds of truncation. Also presented are the average number of piecewise

exponential draws per simulation, N̄Y . For g−1(t) =
√
t, over 18,000 piecewise exponential draws

are required, on average, to produce 1000 truncated piecewise exponential draws with the desired
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properties. Moving to g−1(t) = 3
√
t, we see that the average number of piecewise exponential

draws required to produce 1000 truncated piecewise draws drops to just over 8000, a reduction

of about 56%. Moving to g−1(t) = 4
√
t, the required number of draws decreases further still, but

the rate of decrease tapers off dramatically due to the increasingly narrow bounds of truncation,

and hence a larger proportion of draws being rejected because they are greater than the upper

bound.

The bottom row of panels illustrates the effect of the choice of g on the resulting transformed

truncated piecewise exponential draws that follow a Cox specification. The difference in baseline

hazards between the three choices becomes immediately apparent and brings up an additional

consideration with respect to computation. Specifically, assuming a power function for g, using

successively larger exponents has the effect of vastly increasing the total time at risk in the simu-

lated sample. In this illustration, for g(t) = t2, the average survival time across all 500 simulations

of 1000 units each was about 21.2. For g(t) = t3, this average increases to 37.1, and for g(t) = t4

to 44.7. Because this method generates survival times as a function of covariates that vary at

integer-valued steps of the time scale, the practical effect of doubling the total time at risk is

actually to double the number of rows in the data matrix, which can greatly increase the com-

putational time required to estimate parameters. In another set of simulation experiments (data

not shown), simulated data sets were constructed and Cox models were estimated using the same

three specifications depicted in Figure 1. Assuming no censored observations, the time required

to simulate and estimate parameters for the 500 data sets using g(t) = t2 was approximately 1895

seconds. Using g(t) = t3, the time required more than doubled to approximately 4217 seconds.

For g(t) = t4, time increased further to 6412 seconds.

It is important to keep in mind that although power functions and roots are natural choices

for g and g−1, they are by no means the only possibilities. Researchers can choose a variety

of functional forms, each of which will correspond to a particular functional form for h0(t) that

can be examined graphically, as in Figure 1. Further, the computational expense of each of the

choices for g in relation to one another is specific to the particular choice of parameter values and

data generating processes for the covariates. The type of preliminary testing undertaken in this

illustration is recommended prior to performing a large-scale simulation study.
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4 Simulations to assess validity

The algorithm described and tested in the previous section was employed in a series of simulation

experiments to assess its performance. Across experiments, 1000 simulated datasets were gener-

ated and g was chosen such that g(t) = t2. In one set of experiments, a single time-dependent

covariate was generated according to a uniform distribution with support [−.5, .5]. In a second

set of experiments, two time dependent covariates were generated, one according to a uniform

distribution with support [−.5, .5] and another according to a Bernoulli distribution with pa-

rameter p = .5 (as in the illustration in the previous section). The intention is to demonstrate

the proposed procedure using both one and two covariates and, in the latter case, using both a

continuous and a binary time-dependent covariate. The continuous covariates could capture, for

instance, levels of exposure to some environmental toxin, while the dichotomous covariate could

represent a subject’s movement in and out of some treatment over the duration of follow-up.

Across each of these situations, the proportion of observations that are censored was varied to

take on values of 0, .1, .25, and .5 (using random and uniform censoring), and the number of

observations per simulated dataset was varied to take on values of 100, 500, and 1000. Results of

the Cox regression estimations across these conditions using both the corrected and uncorrected

versions of simulated data are presented in Table II. Also included is the elapsed time required

to simulate and estimate parameters for the 1000 datasets for each value of N , averaged across

the four censoring levels.

[Table 2 about here.]

First examining the elapsed time required to simulate and analyze the data under the various

scenarios, we see that moving from N = 100 to N = 500 leads to upwards of a ten-fold increase

in computation time. Moving from N = 500 to N = 1000 leads to far more modest changes in

elapsed time, and in the one-covariate case even a slight decrease.

A scan of the statistics for the coefficient estimates in Table II indicates that the procedure

performs quite well on average. As expected, for any given level of censoring, the standard

deviation of the estimates decreases as the number of units increases. Further, for any given

value of N , the standard deviation decreases as the proportion of censored cases decreases. These
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relationships are true for both the one- and two-covariate specifications, and for both the corrected

and uncorrected data.

Importantly, the degree of similarity between model estimates from the corrected and uncor-

rected versions of the data suggest that using the ceiling values of the generated survival times

to estimate survival times in the final interval for each observation provides a close approxima-

tion. Though the highest levels of bias are seen for the corrected data, the relative bias across

all scenarios never exceeds 5 percent of the true parameter value. Across values of N , a general

trend is present in which the bias is greater for the highest levels of censoring as compared to the

case of no censoring. But there are clear exceptions, and the relationship is not monotonic as the

level of censoring changes.

For each level of censoring and each value ofN , comparing across the corrected and uncorrected

situations is instructive as to the practical impact of using ceiling values to estimate the final time

interval for each unit. The effect of using ceiling values rather than actual values is to slightly

increase the time at risk for each unit in a given simulation. This means that for any chosen

model specification, value of N , and proportion of censored cases, a particular pattern should

hold such that the estimates for the corrected simulations slightly undershoot their corrected

analogues. Specifically, for a positive coefficient (β in the one-covariate simulations and β1 in

the two-covariate simulations), if the uncorrected bias is positive, the corrected bias for the same

situation will either be positive and smaller in magnitude or negative. If the uncorrected bias for

a positive coefficient is negative, on the other hand, the corrected bias will also be negative but

larger in magnitude. Likewise, for a negative coefficient (β2 in the two-covariate simulations),

if the uncorrected bias is negative, the corrected bias for the same situation will either negative

and smaller in magnitude or positive. If, on the other hand, the uncorrected bias for a negative

coefficient is positive, the corrected bias will be positive and larger in magnitude. This relationship

holds for all simulations and shows why, in some scenarios, the corrected data actually lead to a

smaller percent bias in parameter estimates than the uncorrected data.

The overall takeaway point from Table II is that the procedure performs as expected and

using the ceiling values of the survival times to estimate the final measurement interval for each

observation provides a useful approximation. Indeed, the differences in estimates between the
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corrected and uncorrected versions become trivial as the proportion of censored cases approaches

0. And because of the relationship between the corrected and uncorrected versions of the simulated

survival times, we have seen that the corrected data can, certain cases, actually lead to parameter

estimates that, on average, are closer to the true values than models estimated on the uncorrected

data. Given the intuitive appeal of the corrected data for applied researchers, it seems wholly

appropriate therefore to use the corrected data to generate data that follow a Cox proportional

hazards model with time-dependent covariates.

Producing data for which estimated values of the parameter approach the true values is obvi-

ously critical, but is not the only requirement here. As stated previously, the Cox model assumes

that the relationship follows the proportional hazards assumption. One of the advantages of the

Cox model over parametric proportional hazards models is that the assumption can readily be

tested as part of model diagnostics. A variety of methods for assessing the validity of the propor-

tional hazards assumption are available (see [69] for a review). This paper utilizes the method

proposed by Grambsch and Therneau [13]. In brief, this test essentially involves calculation of a

correlation coefficient for the relationship between scaled Schoenfeld residuals for each covariate

and the time scale to determine whether individual covariates violate the proportional hazards

assumption. In addition, a global test for proportional hazards uses the calculation of a weighted

sum of the scaled Schoenfeld residuals across covariates to determine whether the overall fitted

model is consistent with the proportional hazards assumption [13]. In either case, a statisti-

cally significant χ2 statistic (1 d.f. for the covariate-specific tests and d.f. equal to the number

of covariates in the model for the global test) indicates a violation of the proportional hazards

assumption.

Table III presents summaries of the p-values of the χ2 statistics for each model estimated

on the corrected data from Table II. Results for models estimated on the uncorrected data, χ2

statistics, and correlation coefficients for covariate-specific tests are omitted. For each value of N ,

the latter column indicates the number of instances in which the proportional hazards assumption

was violated.

[Table 3 about here.]
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As can be seen, the procedure employed does not perfectly produce data that follow the

assumption of proportional hazards, but violations are rare, falling well within the range that

would be expected according to the associated p-value. Specifically, using a p < .05 confidence

level, the largest number of violations for any of the experiments was only 38, or about 3.8%

of simulations. Interestingly, there is a general pattern in which more violations of proportional

hazards occur as N increases. This is likely due to the fact that the scaled Schoenfeld residual

tests can be sensitive to outlier survival times and simulations with a larger number of units are

more likely to produce a few relatively extreme values. Graphical summaries of the residuals

(not shown) support this supposition. Though the number of violations will be tolerable for

most applications, in individual instances a violation of proportional hazards will lead to biased

coefficient estimates and suboptimal significance tests, and it will be up to the researcher to

determine how to handle these issues in the context of the particular application. The important

point for the practitioner is that for any simulated data set and estimated model, the assumption

of proportional hazards can and should be tested.

5 Extensions

The discussion thus far has illustrated the theoretical relationship between variates generated

according to a truncated piecewise exponential distribution and survival times that adhere to the

assumptions of the Cox model, as well as the adequacy of the result for use in practical software

applications. However, in many cases researchers will be interested in examining the fitness of

the Cox model when one or more of the assumptions of the data generating process is violated.

Two common situations of interest to medical researchers are the efficacy of the Cox model when

the proportional hazards assumption does not hold or when there is dependence among units in

data settings with repeated events. It is shown here that the method proposed in this paper can

be easily extended to handle either of these situations.
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5.1 Violations of the proportional hazards assumption

The proportional hazards assumption states that the relative impact of any two values of a

covariate can be summarized by a single coefficient. For survival times conditional on time-

dependent covariates, this relationship must hold both within and across units. If the true value

of β varies as a function of t, then proportional hazards is violated, and a variety of methods have

been suggested to account for different forms of nonproportionality, e.g., [11]. In the context of

the data generation method proposed here, a straightforward extension that allows the researcher

to examine various forms of nonproportional hazards is immediately apparent. That is, rather

than defining β as a constant, one can specify β to take on particular values as a function of the

time scale.

To illustrate, suppose a researcher was interested in the adequacy of the Cox framework in a

situation in which a similar change in a covariate at different points in time has a variable impact

on the rate of event occurrence. Using the specifications from the previous section as a base,

another set of experiments was performed by allowing β, β1, and β2 to increase at pre-defined

steps of the time scale. This would represent situations in which a similar change in a covariate

leads to a greater likelihood of event occurrence for units that have survived a longer amount

of time without yet experiencing the event. Specifically, in a set of one-covariate simulations, β

took a value of .1 for t ≤ 10, 1 for 10 < t ≤ 15, 2 for 15 < t ≤ 20, and 3 for t > 20. In a set of

two-covariate simulations, β1 was defined similarly, and β2 was defined such that it took a value

of −5 for t ≤ 10, −3 for 10 < t ≤ 50, and −1 for t > 50. All other specifications were identical to

those used in the N = 1000 scenario in Table II. Results of the Cox estimation are not presented,

and results of the scaled Schoenfeld residual tests on the corrected data are presented in Table IV.

[Table 4 about here.]

The results in Table IV are instructive on at least two points. First, results generally tend

to deviate from their desired properties most often in cases of higher levels of censoring. At low

levels of censoring, the scaled Schoenfeld residual tests are able to detect violations of proportional

hazards in all but a few cases. Second, heavy censoring in combination with a larger number of

covariates seems to be associated with greater difficulty in the ability of these diagnostic tests

17



to detect proportional hazards violations. Specifically, in the two-covariate experiment with 50%

censoring 103 of each of the covariate-specific tests fail to detect a violation, a number that is

substantially higher than expected. In cases such as these in which violations of proportional

hazards are actually desired for a particular simulation study, the sensitivity of these particular

diagnostic tests to outlier survival times work against the researcher’s aims and the effect is most

pronounced with a greater proportion of censored cases. This result reinforces the suggestion

that researchers always engage in formal tests of proportional hazards and examine graphical

summaries of model residuals as an additional check to ensure that simulated data have the

desired properties.

5.2 Repeated events and non-independence

An increasingly common extension of time-to-event models examines situations in which units

do not drop out of the risk set after an event occurs, and multiple events per unit are possible.

The basic Cox model requires that interevent times among units not be correlated, and this

assumption is often unreasonable in practice. Researchers examining means of accounting for

non-independence within the Cox framework will wish to produce repeated events data with

known forms of non-independence. But until now, virtually all simulation studies of this kind

have only considered the time-fixed covariate case, e.g. [11, 38, 70]. For researchers interested in

examining Cox models for repeated events with time-dependent covariates, the method presented

in this paper provides a convenient starting point.

Modifying the algorithm to include multiple events per subject would begin with a model

of the number of events per subject. This could be, for example, a fixed number of events

across subjects, or possibly a random draw from a count model. Then if one were to assume

independence among units, the process would proceed exactly as in the non-repeated events case

by simply drawing the desired number of survival times per subject and stacking the rows of the

data matrix. To introduce non-independence, one might consider introducing heterogeneity via

a unit-specific random effect, or event dependence by specifying the rate of event occurrence for

a given event as a function of the number of events that have already occurred (as in [38]). More

specifically, unit heterogeneity could be introduced by specifying the piecewise exponential rate
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parameter for the kth event for unit i as

λik = exp (Zikβ + µi) ,

where µi is a unit-specific random effect drawn from a known distribution, producing correlation

among units across interevent times. Likewise, event dependence could be introduced by first

calculating λi0 = exp (Ziβ), and then specifying the piecewise exponential rate parameter for the

kth event for unit i as

λik = f(k)λi0,

where f is an arbitrary function that can be constructed in such a way as to introduce a desired

form of event dependence [38]. Further, unit heterogeneity and event dependence can easily be

combined. Simulations using repeated events with non-independence are omitted due to space

constraints, but this exposition shows that extending the algorithm proposed in this paper to the

case of repeated events can be accomplished without introducing significant complexity.

6 Discussion

As statistical methods for time-to-event data have become more widely used in the biomedical

literature, there has naturally been an increasing interest among medical researchers in testing

properties of common time-to-event estimators. The most common tool in this endeavor is sim-

ulation. Unlike simulated data generation methods for linear and generalized linear regression

models, determining the appropriate data generating process for time-to-event models generally

involves a translation from a parameterization of a set of covariates’ effect on the hazard rate into a

relationship between those covariates and survival times. In the context of the Cox proportional

hazards model with time-dependent covariates, additional complications make this translation

even less transparent.

This paper presented a method of generating simulated survival times that follow the Cox

proportional hazards model with time-dependent covariates. The proposed method relies on a

relatively simple argument about a transformation of truncated piecewise exponential random
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variables. Furthermore, for greater ease of understanding among analysts of longitudinal obser-

vational data, the paper suggested a means of ensuring that in the final simulated data structure,

covariates for a given unit under follow-up observation vary at integer-valued time points. Such

a data structure would mimic real-world situations in which measurements are taken at discrete

points (e.g., years, months, weeks, days), which is typical of a large class of longitudinal stud-

ies. And, perhaps most importantly, the proposed procedure allows for an arbitrary number and

functional form of time-dependent and time-fixed covariates. The purpose is simply to provide

applied researchers with a means of producing simulated data with desired properties that achieve

a greater degree of empirical realism.

Results presented here indicate that the suggested procedure performs well in practice. In

the cases of both one and two time-dependent covariates that were explored in this paper, model

estimates more closely approximate true parameter values as the proportion of censored cases

decreases. Additionally, violations of the proportional hazards assumption are well within the

expected range for given confidence levels. Overall, the evidence indicates that the proposed

method provides a valid means of generating simulated data that follow a Cox proportional

hazards model with covariates that vary at step functions of the time scale. Further, it was

shown how the algorithm could be extended to include time-dependent coefficients that induce

violations of the proportional hazards assumption, as well as data structures with repeated events

and non-independence among units.

Given the widespread use of the Cox model with time-dependent covariates and the increasing

availability of longitudinal biomedical data, the need to examine the model’s properties through

simulations will continue to grow. The flexibility of the data generation procedure described in

this paper will make it a useful tool in this enterprise.

Appendix A. Proof of Theorem

A theorem and proof for the case of a two-piece exponential random variable and a covariate that

transitions from a value of 0 to a value of 1 at the single change point were developed in Zhou

[44]. The argument presented here follows a similar line of reasoning, but applies to situations

with an arbitrary number of time change points and an arbitrary form of the covariates.
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First note that the survival function of X is given by

SX(t) =

∏j−1
h=1 exp (−λh (g−1 (sh)− g−1 (sh−1))) exp (−λj (t− g−1 (sj−1)))

KY (g−1(b))−KY (g−1(a))

× I{g−1 (sj−1) < t ≤ g−1 (sj)},

j = 1, . . . , J , where the support of X is [g−1 (a) , g−1 (b)]. Let g(X) = T and note that

P (T > t) = P (g (X) > t) = P
(
X > g−1 (t)

)
= SX

(
g−1 (t)

)
Therefore, the survival function of T is given by

ST (t) =

∏j−1
h=1 exp (−λh (g−1 (sh)− g−1 (sh−1))) exp (−λj (g−1 (t)− g−1 (sj−1)))

KY (g−1(b))−KY (g−1(a))

× I{g−1 (sj−1) < g−1 (t) ≤ g−1 (sj)},

j = 1, . . . , J , where the support of T is [g−1 (a) , g−1 (b)]. Noting that the distribution function of

T follows the relationship FT (t) = 1−ST (t), it immediately follows that the density of T is given

by

fT (t) =
d

dt
FT (t)

=

[
d
dt
g−1(t)

]∏j−1
h=1 exp (−λh (g−1 (sh)− g−1 (sh−1))) (λj) exp (−λj (g−1 (t)− g−1 (sj−1)))

KY (g−1(b))−KY (g−1(a))

× I{g−1 (sj−1) < g−1 (t) ≤ g−1 (sj)},

j = 1, . . . , J , where, again, the support of T is [g−1 (a) , g−1 (b)]. Further, if we define h0(t) =[
d
dt
g−1(t)

]
, then because the hazard rate follows the relationship h(t) = f(t)

S(t)
, we have that

hT (t) =

[
d

dt
g−1(t)

]
λj = h0(t) exp (Z (t) β)

Therefore, T follows a Cox proportional hazards model with baseline hazard h0(t) =
[
d
dt
g−1(t)

]
,

time-varying covariate Z(t), and constant hazard in each interval (sj−1, sj], j = 1, . . . , J .
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Appendix B. Example Computer Code

This appendix presents R code that implements the suggested data generation algorithm. The

rejection sampling procedure used here generates 60 uniform and piecewise exponential random

variables at a time for comparison. This choice was based on a series of speed optimization tests

that compared the time required to generate 100 draws from a truncated piecewise distribution

with the desired bounds of truncation and rate parameters. Drawing one piecewise exponen-

tial random variable at a time was computationally very expensive, taking over 150 seconds to

generate 100 replicates from the desired distribution. The time required dramatically decreased

between 1 and 30 draws at a time, continuing to decrease until about 60 draws at a time, peak-

ing at a minimum of .35 seconds elapsed time. Beyond 60, the elapsed time began to steadily

increase again. It should be noted, however, that this optimization result is sensitive to the ex-

pected value of the rate parameter. Therefore, it is recommended that researchers employing this

method perform similar optimization tests for their desired covariate and coefficient values prior

to undertaking a large-scale simulation.

This example code uses one time-dependent covariate, Z ∼ U[−0.5, 0.5]. Further, n = 1000,

β = 2, g(t) = t2; [10, 150] are the bounds of truncation (corresponding to the minimum and

maximum number of follow-up measurements for units) and 50% of observations are censored.

Within the code, lines of comments are denoted by #. The procedure is as follows:

require(msm)

require(survival)

# CREATING g() AND g^-1()

g.inv <- sqrt

g <- function(x) {

x^2

}

# CREATING THE TIME SCALE AND TRANSFORMED TIME SCALE

t <- 0:199

t.diff <- (t[-1] - t[1:(length(t) - 1)])[-(length(t) - 1)]

g.inv.t <- g.inv(t)

g.inv.t.diff <- (g.inv(t[-1]) - g.inv(t[1:(length(t) - 1)]))[-(length(t) - 1)]
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#CREATING THE BOUNDS OF TRUNCATION

t.max <- 150

t.min <- 10

g.inv.t.max <- g.inv(t.max)

g.inv.t.min <- g.inv(t.min)

#DATA GENERATING PROCESS FOR COVARIATE

B <- function(N, m, M) {

runif(N, m, M)

}

#BETA

b <- 2

#NUMBER OF OBSERVATIONS

n <- 1000

#CREATING DATA VECTOR

z.list <- list()

for (i in 1:n) {

z <- B(length(t), -0.5, 0.5)

z.list[[i]] <- cbind(z, exp(b * z))

}

#GENERATING DATA USING ACCEPT-REJECT METHOD

k <- function(x, m, M, rates, t){

ifelse(x <= m | x >= M, 0, dpexp(x, rates, t))

}

gen.y <- function(x) {

x1 <- x[, 2]

d <- ppexp(g.inv.t.max, x1, g.inv.t) - ppexp(g.inv.t.min, x1, g.inv.t)

M <- 1 / d

r <- 60

repeat{

y <- rpexp(r, x1, g.inv.t)

u <- runif(r)

t <- M * ((k(y, g.inv.t.min, g.inv.t.max, x1, g.inv.t) / d /

dpexp(y, x1, g.inv.t)))

y <- y[u <= t][1]

if (!is.na(y)) break

}

y

}

y <- sapply(z.list, gen.y)

g.y <- g(y)

#CREATING CENSORING INDICATOR

prop.cen <- 0.5

d <- sample(0:1, n, replace = TRUE, prob = c(prop.cen, 1 - prop.cen))
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#CREATING DATASET

data <- NULL

for (i in 1:n) {

id.temp <- rep(i, ceiling(g.y[i]))

time.temp <- c(1:ceiling(g.y[i]))

time0.temp <- 0:ceiling(g.y[i] - 1)

d.temp <- c(rep(0, length(time.temp) - 1), d[i])

z.temp <- z.list[[i]][1:(ceiling(g.y[i])), 1]

data.temp <- cbind(id.temp, time.temp, time0.temp, d.temp, z.temp)

data <- rbind(data, data.temp)

}

colnames(data) <- c(’id’, ’t’, ’t0’, ’d’, ’z1’)

data <- data.frame(data)

model <- coxph(Surv(t0, t, d) ~ z1, data = data)

schoenfeld <- cox.zph(model, transform = ’identity’)

#RESULT

data

summary(model)

schoenfeld
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Nieminen MS, Edelman JM, Hille DA, Dahlöf B. Regression of electrocardiographic left ven-
tricular hypertrophy and decreased incidence of new-onset atrial fibrillation in patients with
hypertension. Journal of the American Medical Association 2006; 296(10):1242–1248. DOI:
10.1001/jama.296.10.1242.

27. Sylvestre MP, Huszti E, Hanley JA. Do Oscar winners live longer than less successful peers?
A reanalysis of the evidence. Annals of Internal Medicine 2006; 145(5):361–363.

28. Zhou Z, Rahme E, Abrahamowicz M, Pilote L. Survival bias associated with time-to-
treatment initiation in drug effectiveness evaluation: A comparison of methods. American
Journal of Epidemiology 2006; 162(10):1016–1023. DOI: 10.1093/aje/kwi307.

29. Sylvestre MP, Abrahamowicz M. Comparison of algorithms to generate event times condi-
tional on time-dependent covariates. Statistics in Medicine 2008; 27(14):2618–2634. DOI:
10.1002/sim.

26

http://dx.doi.org/10.1002/(SICI)1097-0258(19990830)18:16<2123::AID-SIM176>3.0.CO;2-4
http://dx.doi.org/10.1002/(SICI)1097-0258(19990830)18:16<2123::AID-SIM176>3.0.CO;2-4
http://dx.doi.org/10.1146/annurev.publhealth.20.1.145
http://dx.doi.org/10.1146/annurev.publhealth.20.1.145
http://dx.doi.org/10.1001/jama.296.2.185
http://dx.doi.org/10.1093/aje/kwp244
http://dx.doi.org/10.1136/bmj.38779.584028.55
http://dx.doi.org/10.1001/jama.296.10.1242
http://dx.doi.org/10.1093/aje/kwi307
http://dx.doi.org/10.1002/sim


30. Abrahamowicz M, MacKenzie TA. Joint estimation of time-dependent and non-linear ef-
fects of continuous covariates on survival. Statistics in Medicine 2007; 26(2):392–408. DOI:
10.1002/sim.2519.

31. Giorgi R, Gouvernet J. Analysis of time-dependent covariates in a regressive relative survival
model. Statistics in Medicine 2005; 24(24):3863–3870. DOI: 10.1002/sim.2400.

32. Heinzl H, Kaider A. Gaining more flexibility in Cox proportional hazards regression mod-
els with cubic spline functions. Computer Methods and Programs in Biomedicine 1997;
54(3):201–208. DOI: 10.1016/S0169-2607(02)00022-6.

33. Kooperberg C, Clarkson DB. Hazard regression with interval-censored data. Biometrics 1997;
53(4):1485–1494. DOI: 10.1111/1541-0420.00067.
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Figure 1. Effect of choice of g on rejection sampler iterations and form of survival distribution.
Y ∼ piecewise exponential, X ∼ truncated piecewise exponential, T = g(X), λ = 2∗Z1+(−1)∗Z2,
λ, Z1, and Z2 are vectors of length t, Z1ij ∼ U[−.5, .5], Z2ij ∼ Bin(.5), i = 1, . . . , 1000, j =
1, . . . , t > 150.
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Table I. Data Structures for Uncorrected and Corrected Data

Uncorrected Data Corrected Data
Case Elapsed Censoring Case Elapsed Censoring
I.D. Time Indicator I.D. Time Indicator

1 1.000 0 1 1 0

1 2.000 0 1 2 0

...
...

...
...

...
...

1 17.000 0 1 17 0

1 17.648 1 1 18 1

2 1.000 0 2 1 0

2 2.000 0 2 2 0

...
...

...
...

...
...

2 13.000 0 2 13 0

2 13.789 0 2 14 0

...
...

...
...

...
...

55 1.000 0 55 1 0

55 2.000 0 55 2 0

...
...

...
...

...
...

55 16.000 0 55 16 0

55 16.736 1 55 17 1
...

...
...

...
...

...

Note: Uncorrected data uses transformed draws from a piecewise exponential random variable. Corrected data
uses the ceiling values of the transformed random draws to produce an estimate for survival times in the final
interval for each unit.
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Table II. Cox estimation with simulated survival times and time-dependent covariates

Uncorrected Data

Prop. β̂, N = 100 β̂, N = 500 β̂, N = 1000
Cens. β Mean SD Bias Mean SD Bias Mean SD Bias
0.50 β : 2 2.045 0.576 0.045 2.008 0.246 0.008 2.002 0.170 0.002
0.25 β : 2 2.011 0.453 0.011 1.993 0.198 -0.007 1.998 0.144 -0.002
0.10 β : 2 2.035 0.424 0.035 2.004 0.180 0.004 2.003 0.124 0.003
0.00 β : 2 2.006 0.387 0.006 2.000 0.173 <0.000 2.009 0.123 0.009

Elapsed Time 350.58 Seconds 3771.50 Seconds 3411.53 Seconds
0.50 β1 : 2 2.003 0.553 0.003 2.002 0.238 0.002 2.002 0.169 0.002

β2 : -1 -1.025 0.339 -0.025 -1.008 0.142 -0.008 -0.998 0.102 0.002
0.25 β1 : 2 2.014 0.468 0.014 2.008 0.189 0.008 1.997 0.142 -0.003

β2 : -1 -1.001 0.267 -0.001 -0.998 0.115 0.002 -1.002 0.080 -0.002
0.10 β1 : 2 2.021 0.432 0.021 2.009 0.183 0.009 1.998 0.126 -0.002

β2 : -1 -0.985 0.243 0.015 -1.004 0.108 -0.004 -0.998 0.074 0.002
0.00 β1 : 2 2.009 0.405 0.009 2.008 0.172 0.008 1.997 0.120 -0.003

β2 : -1 -1.008 0.230 -0.008 -1.004 0.098 -0.004 -1.000 0.069 <0.000
Elapsed Time 340.60 Seconds 3868.95 Seconds 4476.02 Seconds

Corrected Data

Prop. β̂, N = 100 β̂, N = 500 β̂, N = 1000
Cens. β Mean SD Bias Mean SD Bias Mean SD Bias
0.50 β : 2 1.957 0.573 -0.043 1.923 0.245 -0.077 1.917 0.169 -0.083
0.25 β : 2 1.961 0.449 -0.039 1.947 0.197 -0.053 1.952 0.144 -0.048
0.10 β : 2 2.011 0.422 0.011 1.982 0.179 -0.018 1.981 0.124 -0.019
0.00 β : 2 1.997 0.386 -0.003 1.994 0.172 -0.006 2.005 0.123 0.005

Elapsed Time 358.22 Seconds 3932.64 Seconds 3515.20 Seconds
0.50 β1 : 2 1.936 0.550 -0.064 1.937 0.237 -0.063 1.937 0.169 -0.063

β2 : -1 -0.993 0.338 0.007 -0.977 0.143 0.023 -0.967 0.102 0.033
0.25 β1 : 2 1.975 0.465 -0.025 1.973 0.189 -0.027 1.962 0.142 -0.038

β2 : -1 -0.983 0.266 0.017 -0.982 0.115 0.018 -0.986 0.080 0.014
0.10 β1 : 2 2.001 0.429 0.001 1.991 0.183 -0.009 1.981 0.125 -0.019

β2 : -1 -0.976 0.241 0.024 -0.996 0.108 0.004 -0.991 0.074 0.009
0.00 β1 : 2 2.001 0.404 0.001 2.004 0.172 0.004 1.993 0.120 -0.007

β2 : -1 -1.005 0.229 -0.005 -1.002 0.098 -0.002 -0.999 0.069 0.001
Elapsed Time 345.10 Seconds 4050.03 Seconds 4701.83 Seconds

Note: Uncorrected version uses raw survival times; corrected version uses ceiling values of survival times (see
Table I). “Prop. Cens.” refers to the proportion of cases censored. 1000 datasets were constructed and g(t) = t2

for all simulations. Elapsed time is the time that was required to simulate and estimate parameters for the 1000
simulations, averaged across the four levels of censoring.
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Table III. Summary of p-values from scaled Schoenfeld residual proportional hazards tests, cor-
rected data

N = 100 N = 500 N = 1000
Prop. p-values Freq. p-values Freq. p-values Freq.
Cens. Z Mean SD p < .05 Mean SD p < .05 Mean SD p < .05
0.50 Z1 0.590 0.267 13 0.539 0.272 23 0.532 0.286 34
0.25 Z1 0.581 0.268 8 0.560 0.264 15 0.535 0.280 34
0.10 Z1 0.589 0.264 11 0.553 0.270 23 0.549 0.275 26
0.00 Z1 0.585 0.263 10 0.570 0.267 10 0.531 0.274 21
0.50 Z1 0.586 0.269 23 0.543 0.279 25 0.529 0.279 27

Z2 0.590 0.265 18 0.542 0.282 29 0.517 0.276 32
Global 0.632 0.267 20 0.562 0.279 29 0.542 0.278 27

0.25 Z1 0.587 0.260 16 0.538 0.268 21 0.534 0.271 25
Z2 0.565 0.267 16 0.548 0.267 18 0.523 0.286 38

Global 0.619 0.261 14 0.575 0.262 19 0.547 0.274 30
0.10 Z1 0.595 0.254 7 0.544 0.275 13 0.520 0.278 28

Z2 0.589 0.257 13 0.549 0.274 23 0.539 0.282 34
Global 0.642 0.243 6 0.573 0.272 12 0.548 0.282 31

0.00 Z1 0.584 0.260 12 0.551 0.271 23 0.548 0.284 29
Z2 0.596 0.259 8 0.536 0.277 27 0.544 0.285 35

Global 0.643 0.256 12 0.570 0.272 17 0.564 0.281 33

Note: Tests performed on corrected data from Table II. “Prop. Cens.” refers to the proportion of cases censored.
p-values associated with Z1 and Z2 are χ2(1) probabilities representing a test of the null hypothesis that each
covariate individually does not violate the proportional hazards assumption. p-values associated with global tests
are χ2(2) probabilities representing a test of the null hypothesis that the full model does not violate the proportional
hazards assumption. Large p-values indicate evidence in favor of the proportional hazards assumption.
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Table IV. Summary of p-values from scaled Schoenfeld residual tests of proportional hazards,
time-dependent coefficients, corrected data

p-values
Prop. Cens. Z Mean SD Freq. p < .05

0.50 Z1 0.008 0.030 963
0.25 Z1 0.001 0.011 996
0.10 Z1 0.000 0.001 1000
0.00 Z1 0.000 0.001 1000
0.50 Z1 0.021 0.061 897

Z2 0.021 0.076 897
Global 0.004 0.035 988

0.25 Z1 0.004 0.018 985
Z2 0.003 0.015 989

Global 0.000 0.002 1000
0.10 Z1 0.001 0.007 997

Z2 0.002 0.010 986
Global 0.000 0.000 1000

0.00 Z1 0.000 0.002 1000
Z2 0.002 0.022 993

Global 0.000 0.000 1000

Note: Tests performed on corrected data. “Prop. Cens.” refers to the proportion of cases censored. p-values
associated with Z1 and Z2 are χ2(1) probabilities representing a test of the null hypothesis that each covariate
individually does not violate the proportional hazards assumption. p-values associated with global tests are χ2(2)
probabilities representing a test of the null hypothesis that the full model does not violate the proportional hazards
assumption. Small p-values indicate evidence against the proportional hazards assumption.
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